Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials
نویسندگان
چکیده
Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating.
منابع مشابه
Circular dichroism in optical second harmonic generated in reflection from chiral G-shaped metamaterials
Influence of chirality on the optical second harmonic generated from planar array of G-shaped metamaterials is studied. Circular dichroism of these nanostructures manifests itself via different efficiency of left and right circularly polarized second harmonic that is observed for the samples of different handedness. This difference allows to distinguish between the two enantiomers.
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملExploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy
Symmetry breaking and bonding at interfaces leads to a variety of anisotropy phenomena in transition metal sandwiches and multilayers. The charge density, the spin density and the orbital moment become anisotropic. These e!ects can be studied by the X-ray magnetic circular dichroism (XMCD) technique which senses the local anisotropy of charge, spin and angular momentum around an atom that is ex...
متن کاملThe Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials
Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...
متن کاملCircular dichroism in planar nonchiral plasmonic metamaterials.
It is shown theoretically that a nonchiral, two-dimensional array of metallic spheres exhibits optical activity as manifested in calculations of circular dichroism. The metallic spheres occupy the sites of a rectangular lattice, and for off-normal incidence they show a strong circular-dichroism effect around the surface-plasmon frequencies. The optical activity is a result of the rectangular sy...
متن کامل